Free Pascal :
Reference guide.

Reference guide for Free Pascal, version 2.4
Document version 2.4
March 2010

Michaél Van Canneyt

Contents

1 Pascal Tokens

1.1 Symbols
1.2 Comments o e e e e e e e
1.3 Reservedwords
1.3.1 Turbo Pascalreserved words
1.3.2 FreePascalreservedwords
1.3.3 Object Pascal reserved words
1.34 Modifiers e
1.4 Identifiers e
1.5 Hintdirectives e
1.6 Numbers e e
1.7 Labels e
1.8 Character Strings v v v v i e e e e e e e e e e e e e e e
Constants
2.1 Ordinary constantS it e e e e e e e e e e e e e e e
22 Typed conStantso i e e e e
2.3 ResourCe strings i u e e e e e e e e e e
Types
3.1 Basetypeso e
3.1.1 Ordinal types o o e e e
Integers e
Booleantypes L
Enumeration types
Subrange types e e e e
3.1.2 Realtypes. o . i e e e e e
3.2 CharaCter types v v v v v i i i e e e e e e
321 Char. e e
322 SUIINGS e e e e
323 Shortstrings e e e e e

10
10
11
12
12
13
13
13
13
14
15
16
17

19
19
20
20

CONTENTS

324 ADSISIINGS« o e e e e e e e e e 29

325 WideStrings e e e 31

32.6 ConstantStringso e e e 31

3.2.7 PChar - Null terminated strings 31

3.3 Structured Types o oL e e e 32
Packed structured types 33

330 AITAYS .« o v o e e 34
Static arrays e 34

Dynamic arrayso e e 35

Packing and unpacking anarray 37

332 Recordtypes o 38

333 Settypeso e e e e 42

334 Fletypes o o i e e 42

34 Pointers e e 43
3.5 Forward typedeclarations 45
3.6 Proceduraltypes. 46
37 Variant types oo e e e e e e e e e e e e e e e 47
37.1 Definition L 47

3.7.2 Variants in assignments and expressions 48

3.7.3 Variants and interfaces 49
Variables 50
4.1 Definition e 50
42 Declaration e e e e e e 50
43 SCOPE . . . e e e 52
4.4 Initialized variables 52
4.5 Thread Variables 53
4.6 Properties e e e e e 53
Objects 57
5.1 Declaration e e 57
52 Fields e 58
53 Staticfields 59
5.4 Constructors and destructorso e e e 60
55 Methods 61
5.5.1 Declaration 61
5.5.2 Methodinvocation 62
Staticmethods 62

Virtual methods L 63
Abstractmethods o 64

5.6 Visibility ... 65

CONTENTS

6 Classes 66
6.1 Classdefinitions 66

6.2 Classinstantiation e 70

6.3 Methods e 70
6.3.1 Declaration e 70

6.3.2 dnvocation L e 70

6.3.3 Virtualmethods 71

6.3.4 Classmethods e 72

6.3.5 Messagemethods 72

6.3.6 Usinginherited 74

6.4 Properties 75
6.4.1 Definition 75

6.4.2 Indexed properties e 77

6.4.3 Array propertieso e e e e e e 78

6.4.4 Defaultproperties 79

6.4.5 Storage information L 79

6.4.6 Overriding properties oo e e e 80

7 Interfaces 82
7.1 Definition e 82

7.2 Interface identification: AGUID 83
7.3 Interface implementations L. Lo e 84
74 Interfacesand COM e 85
7.5 CORBA and other Interfaces 85
7.6 Referencecounting e e 85

8 Generics 87
8.1 Introduction e 87

8.2 Generic class definition 87

8.3 Generic class specialization L Ll 89

84 Awordaboutscope e e e 90

9 Expressions 93
0.1 EXpression Syntax v vt i e e e e e e e e e e e e e e e 94
9.2 Functioncalls e 95

0.3 SetconstruCtors v v v it e e e e e e e 97
9.4 Valuetypecasts e 97

0.5 Variable typecasts e e e e e 98
9.6 Unaligned typecasts v v v i e e e e e e e e e 99

9.7 The @operator e e 99
9.8 Operators e 100

CONTENTS

9.8.1 Arithmetic operators
9.8.2 Logicaloperators
9.8.3 Boolean operators
9.84 Stringoperators
9.8.5 Setoperators
9.8.6 Relational operators
9.8.7 Classoperators

10 Statements

10.1 Simple statementso
10.1.1 Assignments
10.1.2 Procedure statements
10.1.3 Gotostatementsol

10.2 Structured statementso
10.2.1 Compound statements
10.2.2 The Case statement
10.2.3 The If..then..elsestatement

10.2.4 The For..to/downto. .do statement

10.2.5 The Repeat..until statement
10.2.6 ThewWhile..dostatement
10.2.7 ThewWith statement
10.2.8 Exception Statements

10.3 Assembler statements

11 Using functions and procedures

11.1 Procedure declaration
11.2 Function declaration
11.3 Functionresults
11.4 Parameter lists
11.4.1 Value parameters
11.4.2 Variable parameters
11.4.3 Outparameters v v v v v v v v v v v v v
11.4.4 Constant parameters
11.4.5 Open array parameters« oo v oo oo ..
11.4.6 Arrayofconst
11.5 Function overloading
11.6 Forward defined functions
11.7 External functions
11.8 Assembler functions Lo
11.9 Modifiers e
119.1 alias o

CONTENTS

1192 cdecl e 132
11.9.3 @XPOIt . . . o v o o e e e e e e 132
11.94 inline e 133
11.95 interrupt 133
1196 local o e 133
11.9.7 nostackframe L 133
1198 overload 134
1199 pascal e 135
11.9.10public e 135
TLOATregister o v v o e e e e e e e e e 136
11.9.12safecall 136
11.9.138aVeregisters o v i i e e e e 136
11.9.14ssoftfloat 136
11.9.05stdeall oo e 136
11.9.16varargs o e 137
11.10Unsupported Turbo Pascal modifiers 137
12 Operator overloading 138
12.1 Introduction o o i i e e e e e 138
12.2 Operator declarations e 138
12.3 AsSignment OPEratorS v v v v v v v e e e e e e e e e e e e e e e e 139
12.4 Arithmetic Operators o e e e 141
12.5 CompariSion OpPerator o v v b e e e e 142
13 Programs, units, blocks 144
13.1 Programs e e e e e e 144
132 Units oo e e e 145
13.3 Unitdependencies o v i i it e e e e e e 147
13.4 Blocks o o 148
13.5 Scope 149
13.5.1 Blockscope e 149
13.5.2 Recordscope o v i i i i e e 150
13.53 ClasSSCOPE . . . v v v v v i e e e 150
13.5.4 Unitscope o v v i i e 150

13.6 Libraries e e 151
14 Exceptions 153
14.1 Theraise statement e 153
14.2 The try...except statement v v v vt e e e e e e 154
14.3 The try..finally statement 155
14.4 Exception handling nesting 156

CONTENTS

14.5 Exception classes e e e 156
15 Using assembler 158
15.1 Assembler statementso e e e e 158
15.2 Assembler procedures and functions Lo 158

List of Tables

3.1 Predefined integer types e 23
3.2 Predefined inte@er typeso e e 24
33 Booleantypes e e 24
3.4 Supported Real types e 27
3.5 PCharpointerarithmetic it 32
9.1 Precedence of operators e e e 93
9.2 Binary arithmetic Operators v v v vt e e e e e e 100
9.3 Unary arithmetic operators v v it 101
9.4 Logical Operators e 101
0.5 Boolean operators i e e e e e e e e e e e 102
0.6 Setoperators i e e e e e e e e e e e e e e e e e 103
9.7 Relational operators 104
9.8 ClassOperators i ittt e e 105
10.1 Allowed C constructs in Free Pascal 108
11.1 Unsupported modifiers e 137

LIST OF TABLES

About this guide

This document serves as the reference for the Pascal langauge as implemented by the Free Pascal
compiler. It describes all Pascal constructs supported by Free Pascal, and lists all supported data
types. It does not, however, give a detailed explanation of the Pascal language: it is not a tuto-
rial. The aim is to list which Pascal constructs are supported, and to show where the Free Pascal
implementation differs from the Turbo Pascal or Delphi implementations.

The Turbo Pascal and Delphi Pascal compilers introduced various features in the Pascal language.
The Free Pascal compiler emulates these compilers in the appropriate mode of the compiler: certain
features are available only if the compiler is switched to the appropriate mode. When required for
a certain feature, the use of the -M command-line switch or { SMODE } directive will be indicated
in the text. More information about the various modes can be found in the user’s manual and the
programmer’s manual.

Earlier versions of this document also contained the reference documentation of the system unit and
objpas unit. This has been moved to the RTL reference guide.

Notations

Throughout this document, we will refer to functions, types and variables with typewriter font.
Files are referred to with a sans font: filename.

Syntax diagrams

All elements of the Pascal language are explained in syntax diagrams. Syntax diagrams are like flow
charts. Reading a syntax diagram means getting from the left side to the right side, following the
arrows. When the right side of a syntax diagram is reached, and it ends with a single arrow, this
means the syntax diagram is continued on the next line. If the line ends on 2 arrows pointing to each
other, then the diagram is ended.

Syntactical elements are written like this

»— syntactical elements are like this — —

Keywords which must be typed exactly as in the diagram:

»— keywords are like this <

When something can be repeated, there is an arrow around it:

»—f this can be repeated fl -

When there are different possibilities, they are listed in rows:
»—r First possibility J -
Second possibility —
Note, that one of the possibilities can be empty:
% First possibility ﬁ
Second possibility —

This means that both the first or second possibility are optional. Of course, all these elements can be
combined and nested.

LIST OF TABLES

About the Pascal language

The language Pascal was originally designed by Niklaus Wirth around 1970. It has evolved sig-
nificantly since that day, with a lot of contributions by the various compiler constructors (Notably:
Borland). The basic elements have been kept throughout the years:

e Easy syntax, rather verbose, yet easy to read. Ideal for teaching.

Strongly typed.

Procedural.

e Case insensitive.

Allows nested procedures.

Easy input/output routines built-in.

The Turbo Pascal and Delphi Pascal compilers introduced various features in the Pascal language,
most notably easier string handling and object orientedness. The Free Pascal compiler initially emu-
lated most of Turbo Pascal and later on Delphi. It emulates these compilers in the appropriate mode
of the compiler: certain features are available only if the compiler is switched to the appropriate
mode. When required for a certain feature, the use of the —-M command-line switch or { SMODE }
directive will be indicated in the text. More information about the various modes can be found in the
user’s manual and the programmer’s manual.

Chapter 1

Pascal Tokens

Tokens are the basic lexical building blocks of source code: they are the *words’ of the language:
characters are combined into tokens according to the rules of the programming language. There are
five classes of tokens:

reserved words These are words which have a fixed meaning in the language. They cannot be
changed or redefined.

identifiers These are names of symbols that the programmer defines. They can be changed and
re-used. They are subject to the scope rules of the language.

operators These are usually symbols for mathematical or other operations: +, -, * and so on.
separators This is usually white-space.

constants Numerical or character constants are used to denote actual values in the source code, such
as 1 (integer constant) or 2.3 (float constant) or ’String constant’ (a string: a piece of text).

In this chapter we describe all the Pascal reserved words, as well as the various ways to denote
strings, numbers, identifiers etc.

1.1 Symbols

Free Pascal allows all characters, digits and some special character symbols in a Pascal source file.

| |
Recognised symbols

»— letter — A...Z — -
Larz]
»— digit — 0...9 — »—

»— hex digit —- 0...9 — <
EA...Fﬂ
a...f—

The following characters have a special meaning:

10

CHAPTER 1. PASCAL TOKENS

+ - %/ =<> 01 ., () @ {} S$#

<= >= 1= 4= —= %= /= (x %) (. .) //

When used in a range specifier, the character pair (. is equivalent to the left square bracket [.
Likewise, the character pair .) is equivalent to the right square bracket]. When used for comment
delimiters, the character pair (is equivalent to the left brace { and the character pair *) is equiva-
lent to the right brace }. These character pairs retain their normal meaning in string expressions.

1.2 Comments

Comments are pieces of the source code which are completely discarded by the compiler. They exist
only for the benefit of the programmer, so he can explain certain pieces of code. For the compiler, it
is as if the comments were not present.

The following piece of code demonstrates a comment:

(» My beautiful function returns an interesting result x)
Function Beautiful : Integer;

The use of (+ and *) as comment delimiters dates from the very first days of the Pascal language. It
has been replaced mostly by the use of { and } as comment delimiters, as in the following example:

{ My beautiful function returns an interesting result }
Function Beautiful : Integer;

The comment can also span multiple lines:

My beautiful function returns an interesting result,
but only if the argument A is less than B.
}

Function Beautiful (A,B : Integer): Integer;

Single line comments can also be made with the // delimiter:

// My beautiful function returns an interesting result
Function Beautiful : Integer;

The comment extends from the // character till the end of the line. This kind of comment was
introduced by Borland in the Delphi Pascal compiler.

Free Pascal supports the use of nested comments. The following constructs are valid comments:

(» This is an old style comment x)
{ This is a Turbo Pascal comment }
// This is a Delphi comment. All is ignored till the end of the line.

11

CHAPTER 1. PASCAL TOKENS

The following are valid ways of nesting comments:

{ Comment 1 (* comment 2 =*) }
(» Comment 1 { comment 2 } *)
{ comment 1 // Comment 2 }

(* comment 1 // Comment 2 x)
// comment 1 (% comment 2 =)
// comment 1 { comment 2 }

The last two comments must be on one line. The following two will give errors:

// Valid comment { No longer valid comment !!

}
and

// Valid comment (% No longer valid comment !!
*)

The compiler will react with a invalid character’ error when it encounters such constructs, regardless
of the -Mturbo switch.

Remark: In TP and Delphi mode, nested comments are not allowed, for maximum compatibility with
existing code for those compilers.

1.3 Reserved words

Reserved words are part of the Pascal language, and as such, cannot be redefined by the programmer.
Throughout the syntax diagrams they will be denoted using a bold typeface. Pascal is not case
sensitive so the compiler will accept any combination of upper or lower case letters for reserved
words.

We make a distinction between Turbo Pascal and Delphi reserved words. In TP mode, only the Turbo
Pascal reserved words are recognised, but the Delphi ones can be redefined. By default, Free Pascal
recognises the Delphi reserved words.

1.3.1 Turbo Pascal reserved words

The following keywords exist in Turbo Pascal mode

absolute file object shr
and for of string
array function on then
asm goto operator to
begin if or type
case implementation packed unit
const in procedure until
constructor inherited program uses
destructor inline record var
div interface reintroduce while
do label repeat with
downto mod self XOor
else nil set

end not shl

12

Remark:

CHAPTER 1. PASCAL TOKENS

1.3.2 Free Pascal reserved words
On top of the Turbo Pascal reserved words, Free Pascal also considers the following as reserved

words:

dispose false true
exit new

1.3.3 Object Pascal reserved words

The reserved words of Object Pascal (used in Delphi or ObjPas mode) are the same as the Turbo
Pascal ones, with the following additional keywords:

as finalization library raise

class finally on resourcestring
dispinterface initialization out threadvar
except inline packed try

exports is property

1.3.4 Modifiers

The following is a list of all modifiers. They are not exactly reserved words in the sense that they can
be used as identifiers, but in specific places, they have a special meaning for the compiler, i.e., the
compiler considers them as part of the Pascal language.

absolute external nostackframe read
abstract far oldfpccall register
alias farle override reintroduce
assembler forward pascal safecall
cdecl index private softfloat
cppdecl local protected stdcall
default name public virtual
export near published write

Predefined types such as Byte, Boolean and constants such as maxint are not reserved words.
They are identifiers, declared in the system unit. This means that these types can be redefined in
other units. The programmer is however not encouraged to do this, as it will cause a lot of confusion.

1.4 Identifiers

Identifiers denote programmer defined names for specific constants, types, variables, procedures
and functions, units, and programs. All programmer defined names in the source code —excluding
reserved words— are designated as identifiers.

Identifiers consist of between 1 and 127 significant characters (letters, digits and the underscore
character), of which the first must be an alphanumeric character, or an underscore (_). The following
diagram gives the basic syntax for identifiers.

f
Identifiers

13

CHAPTER 1. PASCAL TOKENS

»— identifier \ﬁetter‘J ~—
- etter
digit —

Like Pascal reserved words, identifiers are case insensitive, that is, both
myprocedure;
and
MyProcedure;

refer to the same procedure.

Remark: As of version 2.5.1 it is possible to specify a reserved word as an identifier by prepending it with an
ampersand (&). This means that the following is possible:

program testdo;
procedure &do;

begin
end;

begin
&doj;

end.

The reserved word do is used as an identifier for the declaration as well as the invocation of the
procedure ’do’.

1.5 Hint directives

Most identifiers (constants, variables, functions or methods, properties) can have a hint directive
appended to their definition:

f
Hint directives

»— hintdirective >
— Deprecated ——
— Experimental —
—— Platform
L Uninmplemented —

Whenever an identifier marked with a hint directive is later encountered by the compiler, then a
warning will be displayed, corresponding to the specified hint.

deprecated The use of this identifier is deprecated, use an alternative instead.

14

CHAPTER 1. PASCAL TOKENS

experimental The use of this identifier is experimental: this can be used to flag new features that
should be used with caution.

platform This is a platform-dependent identifier: it may not be defined on all platforms.

unimplemented This should be used on functions and procedures only. It should be used to signal
that a particular feature has not yet been implemented.

The following are examples:

Const
AConst = 12 deprecated;

var
P : integer platform;

Function Something : Integer; experimental;

begin
Something:=P+AConst;
end;

begin
Something;
end.

This would result in the following output:

testhd.pp(11,15) Warning: Symbol "p" is not portable
testhd.pp(ll,22) Warning: Symbol "AConst" is deprecated
testhd.pp(15,3) Warning: Symbol "Something" is experimental

Hint directives can follow all kinds of identifiers: units, constants, types, variables, functions, proce-
dures and methods.

1.6 Numbers

Numbers are by default denoted in decimal notation. Real (or decimal) numbers are written using
engineering or scientific notation (e.g. 0.314E1).

For integer type constants, Free Pascal supports 4 formats:
1. Normal, decimal format (base 10). This is the standard format.

2. Hexadecimal format (base 16), in the same way as Turbo Pascal does. To specify a constant
value in hexadecimal format, prepend it with a dollar sign ($). Thus, the hexadecimal $FF
equals 255 decimal. Note that case is insignificant when using hexadecimal constants.

3. As of version 1.0.7, Octal format (base 8) is also supported. To specify a constant in octal
format, prepend it with a ampersand (&). For instance 15 is specified in octal notation as &1 7.

4. Binary notation (base 2). A binary number can be specified by preceding it with a percent sign
(%). Thus, 255 can be specified in binary notationas $11111111.

The following diagrams show the syntax for numbers.

15

CHAPTER 1. PASCAL TOKENS

i
Numbers

»— hex digit sequence ff hex digit —
»— octal digit sequence T octal digit >

»— bin digit sequence 1- -
0

»— digit sequence T digit »—

»— unsigned integer digit sequence -
$ — hex digit sequence —
& — octal digit sequence -
% — bin digit sequence

TS ~

=— unsigned real — digit sequence

L . —digit sequence J L scale factor J

=— scale factor fT E T_L—f digit sequence —
e — Lsign -

»— unsigned number —— unsigned real — »—
Tunsigned integer J

»— signed number ﬁ unsigned number >
sign

Remark: Octal and Binary notation are not supported in TP or Delphi compatibility mode.

1.7 Labels

A label is a name for a location in the source code to which can be jumped to from another location
with a goto statement. A Label is a standard identifier with the exception that it can start with a
digit.

f
Label

»— label — digit sequence -)
L |dent|f|er

Remark: The —Sg or -Mtp switches must be specified before labels can be used. By default, Free Pascal
doesn’t support Label and goto statements. The { SGOTO ON} directive can also be used to allow
use of labels and the goto statement.

16

CHAPTER 1. PASCAL TOKENS

1.8 Character strings

A character string (or string for short) is a sequence of zero or more characters (byte sized), enclosed
in single quotes, and on a single line of the program source code: no literal carriage return or linefeed
characters can appear in the string.

A character set with nothing between the quotes (* /) is an empty string.

| |
Character strings

»— character string quoted string J —
[control string

»— quoted string -’ fT string character T T - >

=— string character T Any character except’ or CR | >

»— control string T # — unsigned integer | >

The string consists of standard, 8-bit ASCII characters or Unicode (normally UTF-8 encoded) char-
acters. The control string can be used to specify characters which cannot be typed on a
keyboard, such as #27 for the escape character.

The single quote character can be embedded in the string by typing it twice. The C construct of
escaping characters in the string (using a backslash) is not supported in Pascal.

The following are valid string constants:
"This is a pascal string’
rrs
4 al
"A tabulator character: "#9’ is easy to embed’

The following is an invalid string:

"the string starts here
and continues here’

The above string must be typed as:

"the string starts here’ #13#10' and continues here’
or

"the string starts here’ #10' and continues here’
on unices (including Mac OS X), and as

"the string starts here’ #13’ and continues here’

17

CHAPTER 1. PASCAL TOKENS

on a classic Mac-like operating system.

It is possible to use other character sets in strings: in that case the codepage of the source file must
be specified with the { SCODEPAGE XXX} directive or with the ~Fc command line option for the
compiler. In that case the characters in a string will be interpreted as characters from the specified
codepage.

18

Chapter 2

Constants

Just as in Turbo Pascal, Free Pascal supports both ordinary and typed constants.

2.1 Ordinary constants

n_n

Ordinary constants declarations are constructed using an identifier name followed by an "=" token,
and followed by an optional expression consisting of legal combinations of numbers, characters,
boolean values or enumerated values as appropriate. The following syntax diagram shows how to
construct a legal declaration of an ordinary constant.

[
Constant declaration

»— constant declaration fT identifier — = — expression — hintdirectives — ; T—N

The compiler must be able to evaluate the expression in a constant declaration at compile time. This
means that most of the functions in the Run-Time library cannot be used in a constant declaration.
Operators suchas+, -, %, /, not, and, or, div, mod, ord, chr, sizeof, pi,
int, trunc, round, frac, odd can be used, however. For more information on expres-
sions, see chapter 9, page 93.

Only constants of the following types can be declared: Ordinal types, Real types, Char,
and St ring. The following are all valid constant declarations:

Const
e = 2.7182818; { Real type constant. }
a = 2; { Ordinal (Integer) type constant. }
c = "47"; { Character type constant. }
s = 'This is a constant string’; {String type constant.}
s = chr(32)
ls = SizeOf (Longint);

Assigning a value to an ordinary constant is not permitted. Thus, given the previous declaration, the
following will result in a compiler error:

s := ’"some other string’;

19

CHAPTER 2. CONSTANTS

For string constants, the type of the string is dependent on some compiler switches. If a specific type
is desired, a typed constant should be used, as explained in the following section.

Prior to version 1.9, Free Pascal did not correctly support 64-bit constants. As of version 1.9, 64-bit
constants can be specified.

2.2 Typed constants

Sometimes it is necessary to specify the type of a constant, for instance for constants of complex
structures (defined later in the manual). Their definition is quite simple.

|
Typed constant declaration

=-typed constant declaration T identifier — : — type — = — typed constant — hintdirective — ; T»

»— typed constant — constant — >
address constant
array constant
record constant —
procedural constant

Contrary to ordinary constants, a value can be assigned to them at run-time. This is an old concept
from Turbo Pascal, which has been replaced with support for initialized variables: For a detailed
description, see section 4.4, page 52.

Support for assigning values to typed constants is controlled by the { $J} directive: it can be switched
off, but is on by default (for Turbo Pascal compatibility). Initialized variables are always allowed.

Remark: It should be stressed that typed constants are automatically initialized at program start. This is also
true for local typed constants and initialized variables. Local typed constants are also initialized at
program start. If their value was changed during previous invocations of the function, they will retain
their changed value, i.e. they are not initialized each time the function is invoked.

2.3 Resource strings

A special kind of constant declaration block is the Resourcestring block. Resourcestring dec-
larations are much like constant string declarations: resource strings act as constant strings, but they
can be localized by means of a set of special routines in the objpas unit. A resource string declaration
block is only allowed in the Delphi or Objfpc modes.

The following is an example of a resourcestring definition:
Resourcestring

FileMenu = ’&File...’;
EditMenu = ’&Edit...’;

All string constants defined in the resourcestring section are stored in special tables. The strings in
these tables can be manipulated at runtime with some special mechanisms in the objpas unit.

20

Remark:

Remark:

CHAPTER 2. CONSTANTS

Semantically, the strings act like ordinary constants; It is not allowed to assign values to them (except
through the special mechanisms in the objpas unit). However, they can be used in assignments or
expressions as ordinary string constants. The main use of the resourcestring section is to provide an
easy means of internationalization.

More on the subject of resourcestrings can be found in the Programmer’s Guide, and in the objpas
unit reference.

Note that a resource string which is given as an expression will not change if the parts of the expres-
sion are changed:

resourcestring
Partl = ’'First part of a long string.’;
Part2 = ’Second part of a long string.’;

Sentence = Partl+’ ’+Part2;

If the localization routines translate Part 1 and Part2, the Sentence constant will not be trans-
lated automatically: it has a separate entry in the resource string tables, and must therefor be trans-
lated separately. The above construct simply says that the initial value of Sentence equals Part 1+’
"+Part2.

Likewise, when using resource strings in a constant array, only the initial values of the resource
strings will be used in the array: when the individual constants are translated, the elements in the
array will retain their original value.

resourcestring
Yes = 'Yes.’;
No = ’'No.’;

Var
YesNo : Array[Boolean] of string = (No, Yes);
B : Boolean;

begin
Writeln (YesNo[B]);

end.

This will print *Yes.” or 'No.” depending on the value of B, even if the constants Yes and No have
been localized by some localization mechanism.

21

file:../prog/prog.html

Chapter 3
Types

All variables have a type. Free Pascal supports the same basic types as Turbo Pascal, with some
extra types from Delphi. The programmer can declare his own types, which is in essence defining an
identifier that can be used to denote this custom type when declaring variables further in the source
code.

[
Type declaration

»— type declaration - identifier — = — type — ; — e

There are 7 major type classes :

M
Types

»— type —— simple type >
— string type —
I structured type —
— pointer type —
I procedural type —
— generic type —
+ specialized type —
L type identifier —

The last case, type identifier, is just a means to give another name to a type. This presents
a way to make types platform independent, by only using these types, and then defining
these types for each platform individually. Any programmer who then uses these custom
types doesn’'t have to worry about the underlying type size: it is opaque to him. It also
allows to use shortcut names for fully qualified type names. e.g. define system. longint
as Olongint and then redefine 1ongint.

3.1 Base types

The base or simple types of Free Pascal are the